
1 The Rise of Stromgren Spheres

1a) Defining Ṅion (Ṅrec) as the total number of photoionizations (recombinations) per second that
occur in the surrounding gas, we have the expression

dNtot

dt
= Ṅion − Ṅrec (1)

As in the standard Stromgren argument, we say that all ionizing photons emitted by the star are
absorbed in the surrounding medium, thus Ṅion is simply the number of ionizing photons emitted
per second, denoted by Q

Ṅion = Q =

∫ ∞
0

Lν(ν)

hν
dν (2)

Since we assume that all photons come out at a single frequency ν0, we simply have

Q =
L

hν0
(3)

The number of total radiative recombinations per second is

Ṅrec = nenpαBV (4)

where ne, np are the electron and proton number densities, V is the volume, and we will use the αB
recombination coefficient (i.e., we will assume all ionizing photons are trapped in the HII region).
Finally, the total number of atoms in the HII region is Ntot = nV . Assuming the HII region is
essentially totally ionized, np = ne = n, where the total number density n is assumed to be constant
with radius. Then equation 1 can be written

n
dV

dt
= Q− n2αBV (5)

which can be written
dV

dt
= nαB

[
Q

n2αB
− V

]
(6)

We see the characteristic scales are the recombination time trec = (nαB)−1 and the Stromgren
volume, Vs = 4πR3

s/3 = Q/n2αB , where the stromgren radius is

Rs =

[
3Q

4πn2αB

]1/3
(7)

So a nice way to write the differential equation is

dV

dt
= − Vs

trec

[
V

Vs
− 1

]
(8)

The solution is
ln(V/Vs − 1) = −t/trec + C (9)

The integration constant C = 0 since the volume is zero at t = 0, so

V (t) = Vs(1− e−t/trec) (10)

or in terms of the radius
R(t) = Rs(1− e−t/trec)1/3 (11)
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We see that as t → ∞, the radius of the HII region goes to Rs, as expected. The timescale for the
HII region to grow is given by the recombination timescale trec.

1b) At a temperature T = 104 K, the recombination coefficient is αB ≈ 2× 10−13. So plugging in
numbers we find

trec = (nαB)−1 ≈ 1.6× 105 years (12)

This is comparable to the lifetime of an O-star, so the HII region will just about grow to its stromgren
radius when the star is about to die.

1c) We can find the velocity of the edge of the HII region by differentiating our solution

v(t) =
dR(t)

dt
=
Rs
trec

e−t/tred

3
(1− e−t/trec)−2/3 (13)

We could have guessed that characteristic velocity of the HII region expansion is

vs ∼ Rs/trec ≈ 107 cm s−1 (14)

This is about an order of magnitude greater than the sound speed c ∼ (kT/mp)
1/2 ∼ 106 cm s−1.

Thus the HII region expansion is initially supersonic and we can neglect hydrodynamical effects.

1d) To determine the ionization state at a radius r, we apply the equation that expresses photoion-
ization equilibrium

4π

∫ ∞
0

Jν(r)

hν
σ(ν)nHI = nenpαB (15)

which states that the local photoionization rate equals the radiative recombination rate. Here σ(ν)
is the bound-free cross-section for hydrogen, and Jν(r) the monochromatic mean intensity of the
radiation field at radius r. Assuming the radiation source is an isotropically emitting point source
of intensity Iν and radius R?, and there is negligible attenuation above it (which should be OK at
very small radii) we can use the standard result

Jν =
IνR

2
?

4r2
(16)

The monochromatic flux at the surface of a lamber radiator is Fν = πIν and so the monochromatic
luminosity is

Lν = 4πR2
?Fν = 4π2R2

?Iν (17)

So we can write the monochromatic mean intensity as

Jν =
Lν

16π2r2
(18)

(Note that the original problem set neglected a factor of 4π). Using this value, the photoionization
equilibrium equation becomes

Qσ0
4πr2

nHI = nenpαB (19)

where σ0 = σ(ν0). Defining the ionized fraction xHII = nHII/n, we have for pure hydrogen, ne =
np = xHIIn and nHI = (1− xHII)n and so

4πQn

r2
(1− xHII) = n2x2HIIαB (20)

Dividing both sides by n2αB , we can write this in dimensionless form

2Ω(1− xHII) = x2HII where Ω =
2πQσ0
nr2αB

(21)
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Where the dimensionless quantity Ω is apparently the useful measure for how strong the ionization
is. We can now solve the quadratic equation for xHII

xHII = −Ω +
√

Ω2 + 2Ω (22)

and hence
xHI = 1− xHII = 1 + Ω−

√
Ω2 + 2Ω (23)

We should check our limits. For a very weak source (L→ 0 at fixed r), we have Ω→ 0 and find no
ionization xHII = 0, as expected. For a very strong source (L → ∞ at fixed r), we have Ω → ∞,
and we need to take a little more care in taking the limit. We use a Taylor expansion in the small
quantity 2/Ω:

xHII = −Ω + Ω(1 + 2/Ω)1/2 ≈ −Ω + Ω(1 + 1/Ω + ...) ≈ 1 (24)

As expected, the medium is totally ionized.

1e) To find the small r behavior, we note that this is the limit Ω→∞, so we use an Taylor expansion
similar to the above, but keep another term

xHI = 1 + Ω− Ω(1 + 2/Ω)1/2 ≈ 1 + Ω− Ω(1 + 1/Ω− 1/4Ω2 + ...) (25)

Thus to lowest order in 1/Ω we find

xHI ≈
1

4Ω
∝ r2n

L
(26)

2 Flipping Spins at the Epoch of Reionization

Define the excitation energy for the 21 cm line to be T? = hνfs/k = 0.068 K, where νfs = (c/21 cm).
We are always in the Rayleigh-Jeans limit since T � T? so the observed specific intensity is

Iν,obs =
2ν2fs
c2

kTb, (27)

where Tb is the brightness temperature, which may or may not be related to the kinetic temperature
of the observed gas, TK . Lastly, the spin temperature Ts is defined as

n1
n0

=
g1
g0
e−T?/Ts = 3e−T?/Ts . (28)

a) Consider a CMB beam with specific intensity Bν(Tγ , νfs) ≡ I0 passing through a neutral
hydrogen cloud of optical depth τ . The radiative transfer equation tells us that

∂Iν
∂τ

= −Iν + Sν . (29)

If Sν is constant in space, we can let x = Iν − Sν and the solution to the above equation is

x = x0e
−τ . (30)

Substituting back in for x, we find that the observed specific intensity for the CMB beam is:

Iν,obs = Bν(Tγ , νfs)e
−τ + Sν(νfs)(1− e−τ ). (31)

Now, we must calculate the source function of the 21 cm line, Sν = jν/αν . In terms of the
Einstein coefficients, the extinction coefficient corrected for stimulated emission is
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αν =
hνfs
4π

φ(νfs)n0B01

(
1− n1B10

n0B01

)
. (32)

Now use the Einstein relation B10/B01 = g0/g1 and substitute in for n1/n0:

αν =
hνfs
4π

φ(νfs)n0B01

(
1− e−T?/Ts

)
. (33)

Now use another Einstein relation A10 = (2hν3fs/c
2)B10 = (2hν3fs/3c

2)B01,

αν =
3c2

8πν2fs
φ(νfs)n0A10

(
1− e−T?/Ts

)
. (34)

Lastly, we can Taylor expand the exponential since Ts � T? to obtain the extinction coefficient
for the 21 cm line:

αν =
3c2

8πν2fs
φ(νfs)n0A10

(
T?
Ts

)
. (35)

We can also express the emission coefficient in terms of the Einstein coefficients:

jν =
hνfs
4π

φ(νfs)n1A10. (36)

Now we can compute the source function by dividing the emission and extinction coefficients:

Sν =
2hν3fs
3c2

n1
n0

Ts
T?

=
2hν3fs
c2

Ts
T?
e−T?/Ts . (37)

In the limit of Ts � T?, we obtain the final result for the source function

Sν =
2ν2fs
c2

kTs. (38)

Now return to equation 31 and plug in for the source function:

Iν,obs = Bν(Tγ , νfs)e
−τ +

2ν2fs
c2

kTs(1− e−τ ). (39)

Plugging in for Iν,obs, we find the brightness temperature to be:

Tb = Tγe
−τ + Ts(1− e−τ ). (40)

Relative to the CMB background temperature, we have δTb ≡ Tb − Tγ , or

δTb = (Ts − Tγ)(1− e−τ ) . (41)
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b) In statistical equilibrium, the balance of Einstein coefficients is

n1(A10 +B10J̄ + C10) = n0(B01J̄ + C01), (42)

or

n1
n0

=
B01J̄ + C01

A10 +B10J̄ + C10
. (43)

Use the following three Einstein relations:

B01 = 3B10,

A10 = 2hν3fsB10/c
2,

C01 = 3C10e
−T?/TK .

Also, the local mean intensity field J̄ is defined such that

J̄ =
2ν2fs
c2

kTγ . (44)

Using the above 4 relations, we can express equation 43 in terms of C10 and A10. Defining
xc = C10T?/A10Tγ , we obtain the desired result:

T−1s =
T−1γ + xcT

−1
K

1 + xc
. (45)

From inspection of the above equation we see that Ts = TK when xc � 1

and Ts = Tγ when xc � 1 . When xc � 1, collisional de-excitation is dominant so the gas

collisions are setting the spin-flip level populations and the spin temperature will approach the
gas temperature. In the opposite limit, the level populations are being set by the radiative
transitions caused by the CMB so the spin temperature approaches Tγ in this limit.

c) We want to find the critical density such that xc = 1. For collisional de-excitation by neutral
hydrogen collisions, the rate is roughly given by

C10 ' σ10nHvH . (46)

We will assume the cross section is just the geometric cross section, σ10 = πa20, where a0 is the
Bohr radius. Assume a characteristic velocity of order

vH '
√
kTK
mH

. (47)

Plugging in we find the critical density to be:

nH,c =
A10Tγ
πa20T?

√
mH

kTK
. (48)

In class we estimated the spontaneous emission coefficient for hyperfine splitting to be A10 '
6×10−15 s−1. Using TK = 100 K and Tγ = 2.7 K, the critical density is roughly nH,c ' 3× 10−2 cm−3 .
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d) The rate at which Lyα photons drive transitions from the excited to the ground hyperfine level
is given by P10. By LTE arguments (similar to the derivation for the relation between C10 and
C01 from class), we have

P01 = 3P10e
−T?/TK . (49)

Statistical equilibrium now including transitions due to Lyα photons is given by

n1(A10 +B10J̄ + C10 + P10) = n0(B01J̄ + C01 + P01). (50)

Analogous to part b), we can use the Einstein relations and the relation for J̄ to express the
above equation only in terms of A10, C10, and P10. The relation we obtain is

T−1s =
T−1γ + T−1K (xc + xα)

1 + xc + xα
, (51)

where

xα =
P10

A10

T?
Tγ
. (52)

e) From part a), the observed fluctuation in the brightness temperature is given by equation
40. Absorption occurs when δTb < 0 and emission occurs when δTb > 0. From inspection of
equation 40, the sign of δTb depends on the quantity Ts − Tγ , so we must determine the sign
of this quantity as a function of redshift.

(a) 200 ≤ z ≤ 1100

• nH > nH,c so we are in the limit of xc � 1

• we know from part b) that Ts = TK in this limit

• the gas and CMB are still thermally coupled so TK = Tγ

• so we have Ts = Tγ and δTb = 0 → no signal

(b) 40 ≤ z ≤ 200

• nH > nH,c still so we are in the limit of xc � 1 and Ts = TK

• the gas falls out of equilibrium with the CMB and cools adiabatically

• for a monotonic adiabatic gas, with no heating sources:

TV 2/3 = constant. (53)

The volume scales with redshift as (1 + z)−3 so we see that

TK ∝ (1 + z)2. (54)

The CMB temperature scales with redshift as Tγ ∝ 1 + z. Thus, we see that once
the gas falls out of equilibrium with the CMB, the gas will cool faster and TK < Tγ .

• So we have:

Ts − Tγ = TK − Tγ < 0, (55)

and we see that δTb < 0 → absorption.

(c) 30 ≤ z ≤ 40
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• now nH < nH,c so we are in the limit of xc � 1

• we know from part b) that Ts = Tγ in this limit

• so we have Ts − Tγ = Tγ − Tγ and δTb = 0 → no signal

(d) 15 ≤ z ≤ 30

• the production of Lyα photons leads to Lyα scattering setting the spin-flip level
populations so xα � 1

• we know from part d) that Ts = TK in this limit

• due to adiabatic cooling and a lack of heating, TK < Tγ

• so we have Ts − Tγ = TK − Tγ < 0 and δTb < 0 → absorption

(e) 7 ≤ z ≤ 15

• the production of Lyα photons leads to Lyα scattering setting the spin-flip level
populations so xα � 1

• we know from part d) that Ts = TK in this limit

• first sources heat the gas such that now TK > Tγ

• so we have Ts − Tγ = TK − Tγ > 0 and δTb > 0 → emission

(f) z ≤ 7

• reionization has ionized the universe so neutral hydrogen is negligible

• thus, xc = xα = 0 and Ts = Tγ

• so we have Ts − Tγ = Tγ − Tγ and δTb = 0 → no signal
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